WHEEL IMPACT MONITORING AND OVERLOAD DETECTION

TLC ENGINEERING SOLUTIONS (Pty) Ltd

Causes Of Wheel Impacts

- Damaged Wheels on Rolling Stock
 - Spalling
 - Shelling
 - Skids
- Defects occur due to
 - Overloading
 - Bad Quality Practices of Operators
 - Defective Braking Systems

Effects of Wheel Impacts

- Reduced Life of Wheel
- Reduced Life of Suspension System
- Reduced Life of Bearings
- Reduced Life of Rail Infrastructure
- Reduced Ride Quality Passenger Discomfort
- Increase in Fuel (or Electricity) Consumption
- Severe Safety Threat

Effects From Wheel Impacts – Infrastructure Damage

1 1

- High rail stresses
- Accelerated rail flaw development
- Cracking of sleepers
- Ballast crushing
- Ballast flow
- Noise pollution
- Fatigue and damage to bogies especially under high axle loads

Implications of Replacing Damaged Wheels

- Disruptive to Operations Flow
- Loss of Revenue during Repair Time

Implications of not Changing Damaged Wheels

- Damage to Rail
 - Damage occurs on every wheel rotation
 - Accelerated rail flaw development
- Damage to Track Structure
 - Impacts transmitted via rail to ballast and subgrade
 - Cracking of sleepers
 - Ballast crushing
 - Ballast Flow
- Damage to Journal Bearings
- Damage to Suspension
- Increased Fuel (or Electricity) Consumption

When to Change Wheels

- Study by the American Association of Railways (AAR):
 - Incremental Cost/Benefit curve shows positive cost savings when wheel impacts exceed 38 tons
- Spoornet (South Africa) recommends
 - reconditioning / replacement for impacts exceeding 28 tons

Wheel Impacts

Maintenance Intervention for 26 ton/axle

Impact value dependant on

•Speed

•Size

- •Depth not really length
- •Age roll out of flaw

•Reject level based on induced stresses with respect to sleeper stress (11.5MPa on slp centre)

• 20T/Axle - 45mm - 65km/h

WIM-WIM SYSTEM

- System configuration
 - Strain gauge based
 - 13 measuring points per rail for wheel impacts based on new 915mm wheels (Can be expanded to more than 16)
 - 1 to 3 measuring points per rail for lateral forces
- Standard computer technology
 - Intel Pentium processor
 - 512 Mbyte Memory
 - Windows XP Operating System

How are Wheel Defects Detected ?

- T
- Wayside Monitoring Equipment is installed at strategic points in the rail network for maximum system coverage (WIMWIM System)
- Data from the monitoring points are communicated to a central point using ITCMS
- Reports are produced allowing management of the output
 - Invisible to the operation
 - Installed without Major Disruption to Traffic
 - Sites Strategically placed for max. Coverage

WIMWIM System - Overview

- STRAIN GAUGES Measurement of Principal Strains
- Similar system also known as WILD systems USA & Britain
- Advantages
 - No expensive calibration methods
 - Relatively cheap and fast repairs
 - Longer Cabling
 - Detect out-of-round wheels
 - Outputs in understandable engineering units
 - Doubling as an in-motion weigh bridge
- Disadvantages
 - Initial expensive cost. Higher Wheel Coverage requires more sensors
 - Prone to lightning strikes. WimWim has extensive lightning protection hardware.

Site Layout And Configuration

Concept Of Wheel Impact Detection

Signal of wheel impact and normal wheel

· Signal is filtered and compared to original signal

Wheel Defect Types

What that Skid Caused

Collapsed Suspension

Skew Bogie Detection

- Identifies bogies that track skew
- Signal generated from web of rail
- Not sensitive to position of vertical load on head of rail
- Elimination of accelerated flange and wheel wear

In-motion Mass Measurement

- The WIMWIM system is able to weigh cars to an accuracy of better than 2% when calibrated.
- Total train mass is better than 0.5%.
- Calibration of such a system showed the following statistics.
- The test was done with 6 vehicles weighing more than 100 ton,
- 8 vehicles weighing 75 to 90 ton and
- 6 vehicles weighing less than 70 ton.
- Ten runs were made in both directions at varying speeds.

Typical In-motion Weighing Statistics (26 Ton axles with good wheels)

WIMWIM vs SkewBogie

• WIMWIM

- Wheel Impacts
- Skew & Flanging Bogie
- In Motion Weighing (Non-Assized) for Overloads
- Skew Bogie
 - Skew & Flanging Bogie

WIMWIM Installation Track Mounted Equipment

Container Equipment

19" Instrument Cabinet

WIMWIM Rack Equipment

Lightning Protection

WIMWIM Installation Analysis Computer

CONCLUSION

- Wheel Defects can easily be detected
- Timeous Repair of Defects saves
 - Track
 - Suspension
 - Bearings
- therefore Money and Lives

Contact Details

For more information contact:

TLC ENGINEERING SOLUTIONS (Pty) LtdWeb:www.tlc.co.za

E-mail:	sales@tlc.co.za	CR- 818
Office:	+27-11-463-3860	
Fax:	+27-11-463-2591	